Exercise 47

If $g(x)=x f(x)$, where $f(3)=4$ and $f^{\prime}(3)=-2$, find an equation of the tangent line to the graph of g at the point where $x=3$.

Solution

Plug in $x=3$ to $g(x)$.

$$
g(3)=3 f(3)=3(4)=12
$$

The point at which the line intersects $g(x)$ is then $(3,12)$. What's needed now is a slope. Take the derivative of $g(x)$ using the product rule.

$$
\begin{aligned}
g^{\prime}(x)=\frac{d}{d x}[x f(x)] & =\left[\frac{d}{d x}(x)\right] f(x)+x f^{\prime}(x) \\
& =(1) f(x)+x f^{\prime}(x) \\
& =f(x)+x f^{\prime}(x)
\end{aligned}
$$

Evaluate it at $x=3$.

$$
g^{\prime}(3)=f(3)+3 f^{\prime}(3)=4+3(-2)=-2
$$

The equation of the tangent line to the graph of g at the point where $x=3$ is therefore

$$
y-12=-2(x-3) .
$$

